skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kao, Hsin-Liu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Emerging electrochromic (EC) materials have advanced the frontier of thin-film, low-power, and non-emissive display technologies. While suitable for wearable or textile-based applications, current EC display systems are manufactured in fixed, pre-designed patterns that hinder the potential of reconfigurable display technologies desired by on-skin interactions. To realize the customizable and scalable EC display for skin wear, this paper introduces ECSkin, a construction toolkit composed of modular EC films. Our approach enables reconfigurable designs that display customized patterns by arranging combinations of premade EC modules. An ECSkin device can pixelate patterns and expand the display area through tessellating congruent modules. We present the fabrication of flexible EC display modules with accessible materials and tools. We performed technical evaluations to characterize the electrochromic performance and conducted user evaluations to verify the toolkit's usability and feasibility. Two example applications demonstrate the adaptiveness of the modular display on different body locations and user scenarios. 
    more » « less
  2. Applying customized epidermal electronics closely onto the human skin offers the potential for biometric sensing and unique, always-available on-skin interactions. However, iterating designs of an on-skin interface from schematics to physical circuit wiring can be time-consuming, even with tiny modifications; it is also challenging to preserve skin wearability after repeated alteration. We present SkinLink, a reconfigurable on-skin fabrication approach that allows users to intuitively explore and experiment with the circuitry adjustment on the body. We demonstrate SkinLink with a customized on-skin prototyping toolkit comprising tiny distributed circuit modules and a variety of streamlined trace modules that adapt to diverse body surfaces. To evaluate SkinLink's performance, we conducted a 14-participant usability study to compare and contrast the workflows with a benchmark on-skin construction toolkit. Four case studies targeting a film makeup artist, two beauty makeup artists, and a wearable computing designer further demonstrate different application scenarios and usages. 
    more » « less
  3. The emergence of on-skin interfaces has created an opportunity for seamless, always-available on-body interactions. However, developing a new fabrication process for on-skin interfaces can be time-consuming, challenging to incorporate new features, and not available for quick form-factor preview through prototyping. We introduce SkinKit, the first construction toolkit for on-skin interfaces, which enables fast, low-fidelity prototyping with a slim form factor directly applicable to the skin. SkinKit comprises modules consisting of skin-conformable base substrates and reusable Flexible Printed Circuits Board (FPCB) blocks. They are easy to attach and remove under tangible plug-and-play construction but still offer robust conductive connections in a slim form. Further, SkinKit aims to lower the barrier to entry in building on-skin interfaces without demanding technical expertise. It leverages a variety of preprogrammed modules connected in unique sequences to achieve various function customizations. We describe our iterative design and development process of SkinKit, comparing materials, connection mechanisms, and modules reflecting on its capability. We report results from single- and multi- session workshops with 34 maker participants spanning STEM and design backgrounds. Our findings reveal how diverse maker populations engage in on-skin interface design, what types of applications they choose to build, and what challenges they faced. 
    more » « less